GCE AS/A level

WJEC
0977/01

MATHEMATICS - FP1
 Further Pure Mathematics

A.M. WEDNESDAY, 29 January 2014

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Differentiate $\frac{x}{1+x}$ from first principles.
2. Given that

$$
S_{n}=1 \times 2^{2}+2 \times 3^{2}+3 \times 4^{2}+\ldots+n(n+1)^{2}
$$

obtain an expression for S_{n}, giving your answer as a product of linear factors.
3. (a) Express $(1+2 \mathrm{i})^{4}$ in the form $x+\mathrm{i} y$, where x, y are real.
(b) (i) Hence show that $1+2 \mathrm{i}$ is a root of the quartic equation $x^{4}+12 x-5=0$.
(ii) Determine the other three roots of the equation.
4. The roots of the quadratic equation $2 x^{2}-3 x+4=0$ are denoted by α, β.

Find the cubic equation whose roots are $\alpha^{2} \beta, \alpha \beta^{2}, \alpha \beta$.
5. The transformation T in the plane consists of a reflection in the line $x+y=0$, followed by a translation in which the point (x, y) is transformed to the point $(x+1, y+2)$, followed by a clockwise rotation through 90° about the origin.
(a) Show that the matrix representing T is

$$
\left[\begin{array}{rrr}
-1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Find the equation of the image under T of the line $y=2 x-1$.
6. (a) Use mathematical induction to prove that

$$
\left[\begin{array}{ll}
1 & 2 \tag{7}\\
0 & 3
\end{array}\right]^{n}=\left[\begin{array}{cc}
1 & 3^{n}-1 \\
0 & 3^{n}
\end{array}\right]
$$

for all positive integers n.
(b) Determine whether or not this result is true for $n=-1$.
7.
(a) Given that $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 1 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]$,
(i) find the adjugate matrix of \mathbf{A},
(ii) find the inverse of \mathbf{A}.
(b) Hence solve the equations

$$
\begin{align*}
2 x+3 y+z & =13 \\
x+2 y+3 z & =13 \\
2 x+3 y+4 z & =19 \tag{2}
\end{align*}
$$

8. The function f is defined by

$$
f(x)=\left(\frac{1}{x}\right)^{\sqrt{x}}, \text { for } x>0
$$

(a) Show that

$$
f^{\prime}(x)=f(x) g(x)
$$

where $g(x)$ is to be given in simplified form.
(b) Find the coordinates of the stationary point on the graph of f, giving your answers correct to three significant figures.
(c) Determine the set of values of x for which $f^{\prime}(x)$ is positive and the set of values of x for which $f^{\prime}(x)$ is negative. Hence identify the stationary point as a maximum or a minimum.
9. The complex number z is represented by the point $P(x, y)$ in the Argand diagram. Given that

$$
|z-2|=2|z+\mathrm{i}|
$$

(a) show that it can be deduced immediately that the locus of P passes through the origin,
(b) show that the locus of P is a circle, and find its radius and the coordinates of its centre.

END OF PAPER

